Abstract

Intracellular recordings were obtained from intact and axotomized lumbar motoneurons of aged cats. The sub-threshold electrical properties of these cells were measured, including input resistance, resting membrane potential, and the first two equalizing time constants as well as their associated amplitude constants. These data were used in a semi-infinite cable model of the motoneuron to estimate the size of the shunt resistance (Rshunt) which is created when the electrode penetrates the cell membrane. The average Rshunt for intact aged cells was 5.35 ± 1.01 MΩ, while that for the axotomized aged cells was 8.93 ± 1.20 MΩ. The statistically significant difference in mean shunt magnitude did not affect the measurements of membrane time constant because this constant is independent of the shunt in this model of the motoneuron. However, the determination of cell input resistance, which is not independent of the shunt, was shown to underestimate the real cell input resistance by 23–29%. We therefore conclude that the shunt resistance is an important factor which should be taken into account when measuring input resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.