Abstract

Metallic carbon nanotubes (CNTs) are promising as transmission lines or interconnects in radio-frequency nanoelectric circuits. This paper presents passive network properties of individual multi-walled carbon nanotubes (MWNTs) up to 110 GHz measured at room temperature. From the S-parameter data, frequency-dependent electric properties of the MWNT were extracted using an equivalent R-L-C circuit model. The ac impedance of the MWNT decreases significantly with increasing frequency, as predicted by earlier theoretical work. In particular, the equivalent resistance decreases a few hundred times. Our findings show that MWNTs can carry high-frequency currents much better than dc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call