Abstract

To enhance the passive direction-of-arrival (DOA) estimation performance of a volumetric array in high noise and strong interference background, a new DOA estimation method based on Fourier integral method (FIM) and inverse beamforming (IBF) is proposed. This method combines the two methods and thus obtains the interference cancelling capability of IBF and the noise suppression ability of FIM simultaneously. Furthermore, the proposed method is generalized to be feasible for arbitrary volumetric array and also achieves the same robustness as the conventional beamforming (CBF). With theoretical analysis and computer simulations, it is shown that with the proposed method, the volumetric array can obtain better DOA estimation results in low signal-to-ratio (SNR) condition as well as in the presence of interferences, when compared to the conventional CBF method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.