Abstract
Internet of Things (IoT) image sensors for surveillance and monitoring, digital cameras, smart phones and social media generate huge volume of digital images every day. Image splicing and copy-move attacks are the most common types of image forgery that can be done very easily using modern photo editing software. Recently, digital forensics has drawn much attention to detect such tampering on images. In this paper, we introduce a novel feature extraction technique, namely Sum of Relevant Inter-Cell Values (SRIV) using which we propose a passive (blind) image forgery detection method based on Discrete Cosine Transformation (DCT) and Local Binary Pattern (LBP). First, the input image is divided into non-overlapping blocks and 2D block DCT is applied to capture the changes of a tampered image in the frequency domain. Then LBP operator is applied to enhance the local changes among the neighbouring DCT coefficients, magnifying the changes in high frequency components resulting from splicing and copy-move attacks. The resulting LBP image is again divided into non-overlapping blocks. Finally, SRIV is applied on the LBP image blocks to extract features which are then fed into a Support Vector Machine (SVM) classifier to identify forged images from authentic ones. Extensive experiment on four well-known benchmark datasets of tampered images reveal the superiority of our method over recent state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.