Abstract

This study investigates the effect of using a latent heat storage unit (LHSU) equipped with fins and nanoparticles (NAPs) on the performance of a photovoltaic (PV) system. Various PV systems were assessed for their economic viability and environmental impact. Initially, three different PV systems were designed and analyzed: a conventional PV, a PV with a paraffin-containing LHSU, and a PV with LHSU integrating 3 fins and paraffin. Results from the first set of experiments indicated that the fin-integrated system delivered the best performance. In the second phase, the most effective system from the initial stage (PV with 3 fins-added LHSU) was compared to systems with 6 fins-integrated LHSU and LHSUs integrating 6 fins and iron (Fe) NAPs. The stage specifically examined the effects of doubling the number of fins and adding NAPs to the paraffin on performance. It was found that increasing the number of fins resulted in a levelized cost of electricity (LCOE) of 0.69 USD/kWh. The electrical (module) efficiency of the system incorporating 6 fins and NAPs improved by 15.51 % compared to the conventional system. Moreover, the surface temperature of the PV panel was reduced by 7.28–17.93 % using these modifications. Performance ratio values for the five different analyzed PV systems ranged between 0.597 and 0.689. From an environmental perspective, integrating aluminum into PV systems lead to a total environmental impact of 4.73 Pt/h and an environmental impact of electricity produced (EIE) of 0.90 mPts/kWh. However, introduction of NAPs significantly increased these values to 17.76 Pt/h and 3.09 mPts/kWh, respectively. This study highlights the potential of the proposed passive cooling technique for enhancing PV system efficiency while also pointing out the necessity for design improvements to optimize economic and environmental impacts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call