Abstract

Control effects of leading-edge grooves on deep cavity noise are investigated numerically. The length-to-depth ratio of the grooves are 0.5, 1, and 4, respectively. The freestream Mach number is equal to 0.16, corresponding to the Re based on the cavity length of 7.7 × 105. The Detached Eddy Simulations (DES) combined with Ffowcs Williams–Hawkings (FW-H) acoustic analogy are adopted to simulate the characteristic information of the flow field and the acoustic field. The analysis results show that all grooves investigated in this paper have a certain noise control effect, and the groove with the most obvious noise reduction effect is the groove with a length-to-depth ratio of 0.5, namely, the deep groove. Narrowband noise generated by the flow-acoustic feedback (100–700 Hz) and the acoustic resonance mechanism (above 300 Hz) and broadband noise caused by the turbulent disturbance in the shear layer of the cavity mouth significantly reduce when the deep groove is used for the noise control. The reason for the noise reduction is that the leading-edge grooves can effectively change the flow characteristics near the mouth of the downstream cavity. When the flow passes the grooves, the groove flow reduces the energy in the fluid, resulting in the significant decrease of flow velocity of the boundary layer of the incoming flow of the cavity. In addition, the use of the deep groove also promotes the vortex concentration position to move towards the bottom of the cavity, pushes the energy in the shear layer of the downstream cavity towards the front-edge as well as the bottom of the cavity, and stabilizes the development of the shear layer near the cavity mouth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call