Abstract

Numerical simulations of incompressible laminar flow past a circular cylinder using wavy wall confinement are performed in order to study drag reduction and vortex shedding suppression for Reynolds numbers (50 ≤ Re ≤ 280) and blockage ratios (0.5 ≤ D/H ≤ 0.9), where D is the cylinder diameter and H is the channel height. The optimum configuration of wavy wall confinement is identified to have an amplitude of 0.2D and wavelength of 4D which manifests the minimum drag coefficient and complete vortex shedding suppression (zero lift coefficient). The flow over the cylinder with optimized wavy wall confinement produces a stable vortex pair in the wake of the cylinder. The length of vortex pair in the wake increases by increasing the Reynolds number and decreasing the blockage ratio. The drag on the cylinder reduces when the length of vortex pair increases due to early flow separation and reduction in pressure drag. The drag coefficient decreases by 36% in comparison to the plane wall confinement at D/H = 0.5. The drag coefficient decreases for wavy wall configuration by about 67% for D/H = 0.7 and 94% for D/H = 0.9. The lift coefficient remains zero at all Reynolds numbers and blockage ratios which indicates complete suppression of vortex shedding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call