Abstract

Passive cavitation mapping (PCM) algorithms for diagnostic ultrasound arrays based on time exposure acoustics (TEA) exhibit poor axial resolution, which is in part due to the diffraction-limited point spread function of the imaging system and poor rejection by the delay-and-sum beamformer. In this article, we adapt a method for speed of sound estimation to be utilized as a cavitation source localization (CSL) approach. This method utilizes a hyperbolic fit to the arrival times of the cavitation signals in the aperture domain, and the coefficients of the fit are related to the position of the cavitation source. Wavefronts exhibiting poor fit to the hyperbolic function are corrected to yield improved source localization. We demonstrate through simulations that this method is capable of accurate estimation of the origin of coherent spherical waves radiating from cavitation/point sources. The average localization error from simulated microbubble sources was 0.12 ± 0.12mm ( 0.15 ± 0.14λ0 for a 1.78-MHz transmit frequency). In simulations of two simultaneous cavitation sources, the proposed technique had an average localization error of 0.2mm ( 0.23λ0 ), whereas conventional TEA had an average localization error of 0.81mm ( 0.97λ0 ). The reconstructed PCM-CSL image showed a significant improvement in resolution compared with the PCM-TEA approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call