Abstract

In this paper, the Proportional-Derivative (PD) based attitude control algorithm of the gravity gradient stabilized satellite has been developed. The satellite is equipped with 3 magnetic torquers where each of the magnetic torquer is placed along the +x, +y, +z axes. The control torque is generated when the magnetic field generated by the magnetic torquers couples with the geomagnetic fields, whereby the vector of the generated torque is perpendicular to both the magnetic fields. The developed control algorithm was simulated using the complex and simplified geomagnetic field models for a Low Earth Orbit (LEO) satellite mission in a nominal attitude operation. Results from simulations exhibit the effectiveness of the attitude control torque generation that fulfills the mission attitude control requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.