Abstract

Recently, the array-invariant method was proposed to passively localize sources of opportunity in shallow water. It exploits multiple arrivals which are different in terms of beam angle and travel time. Conventional plane-wave beamforming in the existing array-invariant method is used to obtain beam-time migration. The resolution capability of conventional plane-wave beamforming is determined by array aperture, which, however, limits the localization accuracy of the existing array-invariant method. To improve the localization accuracy, this study proposes the use of two-dimensional (2D) deconvolution to obtain a better beam-time migration than in conventional plane-wave beamforming. Our simulation with a small horizontal array showed that the range estimation error of the proposed array-invariant method based on 2D deconvolution was only one-third of that of the existing method. The experiment also demonstrated the validity of our proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.