Abstract
In this paper, we report the development of a wireless, passive, biocompatible, and flexible system for stimulation of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMS). Fabricated on a transparent parylene/PDMS substrate, the proposed stimulator enables real-time excitation and characterization of hiPSC-CMs cultured on-board. The device comprises a rectenna operating at 2.35 GHz which receives radio frequency (RF) energy from an external transmitter and converts it into DC voltage to deliver monophasic stimulation. The operation of the stimulator was primarily verified by delivering monophasic voltage pulses through gold electrodes to hiPSC-CMs cultured on the Matrigel-coated substrates. Stimulated hiPSC-CMs beat in accordance with the monophasic pulses when delivered at 0.5, 1, and 2 Hz pulsing frequency, while no significant cell death was observed. The wireless stimulator could generate monophasic pulses with an amplitude of 8 V at a distance of 15 mm. These results demonstrated the proposed wireless stimulator's efficacy for providing electrical stimulation to engineered cardiac tissues. The proposed stimulator will have a wide application in tissue engineering where a fully wireless stimulation of electroconductive cells is needed. The device also has potential to be employed as a cardiac stimulator by delivering external stimulation and regulating the contractions of cardiac tissue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.