Abstract

Abstract : A new compressible Navier-Stokes code in cylindrical coordinates was developed for investigating axisymmetric wakes of bluff-based bodies in supersonic flows. In this code, high-order compact finite differences derived for non-equidistant grids are employed and a new stare-of-the-art axis treatment is incorporated. Additionally, the fully three-dimensional transport equations for turbulent kinetic energy and turbulent dissipation are implemented to enable (steady or unsteady) Reynolds Averaged Navier Stokes (RANS) simulations. Furthermore, a new Flow Simulation Methodology (FSM) was developed for computing complex compressible flows. The centerpiece of FSM) is a strategy to provide the proper amount of modeling of the subgrid scales. This is accomplished by a which locally and instantaneously compares the smallest relevant scales to the local grid size. The contribution function is designed such that it provides no modeling if the computation is locally well resolved so that the computation approaches a Direct Numerical Simulation (DNS) in the fine grid limit, or provides modeling of all scales in the coarse grid limit and thus approaches an unsteady PANS (URANS) calculation. In between these resolution limits, the contribution function adjusts the necessary modeling for the unresolved scales while the larger (resolved) scales are computed as in traditional Large Eddy Simulations (LES) . Preliminary results have shown that the new high- order code has great advantages for supersonic base flow simulations and that calculations, in particular together with FSM), will allow simulations of supersonic base flows at much higher Reynolds numbers than possible with conventional LES.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call