Abstract

This work deals with the design and experimental evaluation of a passive/active cantilever beam autoparametric vibration absorber mounted on a two-story building-like structure (primary system), with two rigid floors connected by flexible columns. The autoparametric vibration absorber consists of a cantilever beam with a piezoelectric patch actuator, cemented to its base, mounted on the top of the structure and actively controlled through an acquisition system. The overall system is then a coupled nonlinear oscillator subjected to sinusoidal excitation in the neighborhood of its external and internal resonances. The addition of the piezoelectric patch actuator to the cantilever beam absorber makes active the passive vibration absorber, thus enabling the possibility to control its equivalent stiffness and damping and, as a consequence, the implementation of an active vibration control scheme able to preserve, as possible, the autoparametric interaction as well as to compensate varying excitation frequencies and parametric uncertainty.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.