Abstract
Abstract Passive acoustic monitoring using autonomous recording units (ARUs) is a fast-growing area of wildlife research especially for rare, cryptic species that vocalize. Northern Spotted Owl (Strix occidentalis caurina) populations have been monitored since the mid-1980s using mark–recapture methods. To evaluate an alternative survey method, we used ARUs to detect calls of Northern Spotted Owls and Barred Owls (S. varia), a congener that has expanded its range into the Pacific Northwest and threatens Northern Spotted Owl persistence. We set ARUs at 30 500-ha hexagons (150 ARU stations) with recent Northern Spotted Owl activity and high Barred Owl density within Northern Spotted Owl demographic study areas in Oregon and Washington, and set ARUs to record continuously each night from March to July, 2017. We reviewed spectrograms (visual representations of sound) and tagged target vocalizations to extract calls from ~160,000 hr of recordings. Even in a study area with low occupancy rates on historical territories (Washington’s Olympic Peninsula), the probability of detecting a Northern Spotted Owl when it was present in a hexagon exceeded 0.95 after 3 weeks of recording. Environmental noise, mainly from rain, wind, and streams, decreased detection probabilities for both species over all study areas. Using demographic information about known Northern Spotted Owls, we found that weekly detection probabilities of Northern Spotted Owls were higher when ARUs were closer to known nests and activity centers and when owls were paired, suggesting passive acoustic data alone could help locate Northern Spotted Owl pairs on the landscape. These results demonstrate that ARUs can effectively detect Northern Spotted Owls when they are present, even in a landscape with high Barred Owl density, thereby facilitating the use of passive, occupancy-based study designs to monitor Northern Spotted Owl populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.