Abstract

A passive acoustic method to locate moving sound sources is applied to maneuvering aircraft. The advantages of the method are that it is suitable for all kinds of aircraft, not only propeller-driven, and is not restricted to low height above the ground. Its applicability could be, for instance, to supplement aircraft noise monitoring systems or to supervise small airports' activities. The method is based on the relation between the relative Doppler effect observed from a set of at least seven microphone receivers, distributed in the airport surroundings, and the aircraft position and speed. The method requires knowledge of the position of the aircraft at the start of takeoff. The ambiguity function is used to calculate the relative Doppler stretch of the spectrum of the sound between pairs of microphones. The results of applying the ambiguity function are the inputs to a system of equations that relates the aircraft position and speed to the relative Doppler frequency stretches. This system of equations is solved using a genetic algorithm. The performance of the method was tested by computer simulation. The results showed that the location errors are of the same order of magnitude as the size of an average aircraft, even if the takeoff position is not accurately known.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.