Abstract
An all-solid-state battery is a potentially superior alternative to a state-of-the-art lithium-ion battery owing to its merits in abuse tolerance, packaging, energy density, and operable temperature ranges. In this work, a 5 V-class spinel LiNi0.5Mn1.5O4 (LNMO) cathode is targeted to combine with a high-ionic-conductivity Li6PS5Cl (LPSCl) solid electrolyte for developing high-performance all-solid-state batteries. Aiming to passivate and stabilize the LNMO-LPSCl interface and suppress the unfavorable side reactions such as the continuous chemical/electrochemical decomposition of the solid electrolyte, oxide materials including LiNbO3, Li3PO4, and Li4Ti5O12 are rationally applied to decorate the surface of pristine LNMO particles with various amounts through a wet-chemistry approach. Electrochemical characterization demonstrates that the composite cathode consisting of 8 wt % LiNbO3-coated LNMO and LPSCl in a weight ratio of 70:30 delivers the best electrochemical performance with an initial discharge capacity of 115 mA h g-1 and a reversible discharge capacity of 80 mA h g-1 at the 20th cycle, suggesting that interfacial passivation is an effective strategy to ensure the operation of 5 V-class all-solid-state batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.