Abstract

Positively charged cationic defects are the main source of defects in metal-halide perovskite solar cells. They determine the quasi-Fermi level of electrons under illumination and contribute to non-radiative recombination loss, causing an open-circuit voltage deficit. In addition, they act as ion migration pathways for halide hopping, thus deteriorating long-term stability. Herein, a nitrogen-donor crown ether as a positive defect passivator is developed, which demonstrates a soft Lewis base nature, a large donor number and a higher formation constant with positively charged cationic defects. Density functional theory calculation indicates that the electron-donating nitrogen atom dramatically increases the electron density of oxygen atoms, leading to a strong affinity with positively charged cationic defects (Pb2+ and Cs+). The electron trap density in perovskite is significantly reduced by 27 %, resulting in an increased build-in potential. By adding a small amount of nitrogen-donor crown ether to the precursor solution, the perovskite solar cells achieve an efficiency of 24.07 % with an open-circuit voltage of 1.174 V and a fill factor of 82.15 %. Moreover, the unencapsulated perovskite solar cells show a T80 lifetime of 510 h under continuous operation (1 sun equivalent illumination, maximum power point tracking condition, dry N2 atmosphere), and enhanced moisture and heat stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call