Abstract

Hematite (α-Fe2O3) is a promising photoanode material for photoelectrochemical water splitting. Surface-passivating layers are effective in improving water oxidation kinetics; however, the passivation mechanism is not fully understood due to the complexity of interfacial reactions. Focusing on the Fe-terminated Fe2O3 (0001) surface that exhibits surface states in the band gap, we perform ab initio quantum dynamics simulations to study the effect of an α-Ga2O3 overlayer on charge recombination. The overlayer eliminates surface states and suppresses charge recombination 4-fold. This explains in part the observed cathodic shift in the onset potential for water oxidation. The increased charge carrier lifetime is an outcome of two factors, energy gap and electron-vibrational coupling, with a positive contribution from the former but a negative contribution from the latter. This work presents an advance in the atomistic time-domain understanding of the influence of surface passivation on charge recombination dynamics and provides guidance for designing novel α-Fe2O3 photoanodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call