Abstract

Laser-induced selective Si doping and simultaneous ablation of a dielectric passivation layer is a promising technology for the creation of efficient and cost-effective solar cells. In this paper, the electrical quality of emitters produced with a 532-nm continuous-wave laser will be discussed using elaborate analysis of quasi-steady-state photoconductance (QSSPC) measurements. It will be shown that these emitters cause good charge carrier shielding, which leads to emitter saturation current densities as low as 240 fA/cm $^2$ for unpassivated surfaces. If an SiN $_{\it x}$ layer is present during laser doping, the emitter recombination increases by a factor of three. This detrimental effect is put down to the formation of microcavities within the recrystallized Si. A model of the ablation mechanism and cavity formation for long laser pulses is proposed, with the experimental data in this study serving as a limiting case for long irradiation lengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.