Abstract

The influence of atomic hydrogen on the surface passivation of the interface is investigated. Inductively coupled photoconductivity decay measurements indicate an increase in carrier recombination at the surfaces following atomic hydrogen exposure, as measured by an increase in the emitter saturation current density. These defects are not thermally stable and are removed by subsequent thermal treatments above in . Atomic hydrogen results in the passivation of a certain fraction of thermally stable interface defects. However, the fraction of defects passivated is always slightly lower than can be achieved by exposure to molecular hydrogen. A variation in a sample temperature during atomic H exposure in the range of does not have a significant impact on the passivation efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.