Abstract
Abstract We present an equilibrium model of methane venting through the hydrate stability zone at southern Hydrate Ridge, offshore Oregon. Free gas supplied from below forms hydrate, depletes water, and elevates salinity until pore water is too saline for further hydrate formation. This system self-generates local three-phase equilibrium and allows free gas migration to the seafloor. Log and core data from Ocean Drilling Program (ODP) Site 1249 show that from the seafloor to 50 m below seafloor (mbsf), pore water salinity is elevated to the point where liquid water, hydrate and free gas coexist. The elevated pore water salinity provides a mechanism for vertical migration of free gas through the regional hydrate stability zone (RHSZ). This process may drive gas venting through hydrate stability zones around the world. Significant amount of gaseous methane can bypass the RHSZ by shifting local thermodynamic conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.