Abstract
We propose and analyze passification-based adaptive controller for linear uncertain systems with quantized measurements. Since the effect of the quantization error is similar to the effect of a disturbance, the adaptation law with σ-modification is used. To ensure convergence to a smaller set, the parameters of the adaptation law are being switched during the evolution of the system and a dynamic quantizer is used. It is proved that if the quantization error is small enough then the proposed controller ensures convergence of the state of a hyper-minimum-phase system to an arbitrarily small vicinity of the origin. Applicability of the proposed controller to polytopic-type uncertain systems and its efficiency is demonstrated by the example of yaw angle control of a flying vehicle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.