Abstract

A reconfigurable microwave photonic (MWP) multiband filter with selectable and switchable passbands is proposed and experimentally demonstrated, with a maximum of 12 simultaneous passbands evenly distributed from 0 to 10 GHz. The scheme is based on the generation of tunable optical comb lines using a two-stage Lyot loop filter, such that various filter tap spacings and spectral combinations are obtained for the configuration of the MWP filter. Through polarization state adjustment inside the Lyot loop filter, an optical frequency comb with 12 different comb spacings is achieved, which corresponds to a MWP filter with 12 selectable passbands. Center frequencies of the filter passbands are switchable, while the number of simultaneous passbands is tunable from 1 to 12. Furthermore, the MWP multiband filter can either work as an all-block, single-band or multiband filter with various passband combinations, which provide exceptional operation flexibility. All the passbands have over 30 dB sidelobe suppression and 3-dB bandwidth of 200 MHz, providing good filter selectivity.

Highlights

  • A reconfigurable microwave photonic (MWP) multiband filter with selectable and switchable passbands is proposed and experimentally demonstrated, with a maximum of 12 simultaneous passbands evenly distributed from 0 to 10 GHz

  • The scheme is based on the generation of tunable optical comb lines using a two-stage Lyot loop filter, such that various filter tap spacings and spectral combinations are obtained for the configuration of the MWP filter

  • A MWP multiband filter with reconfigurable passband numbers and center frequencies is experimentally demonstrated

Read more

Summary

OPEN Passband switchable microwave photonic multiband filter

A reconfigurable microwave photonic (MWP) multiband filter with selectable and switchable passbands is proposed and experimentally demonstrated, with a maximum of 12 simultaneous passbands evenly distributed from 0 to 10 GHz. The scheme is based on the generation of tunable optical comb lines using a two-stage Lyot loop filter, such that various filter tap spacings and spectral combinations are obtained for the configuration of the MWP filter. Through polarization state adjustment inside the Lyot loop filter, an optical frequency comb with 12 different comb spacings is achieved, which corresponds to a MWP filter with 12 selectable passbands. L1 and L2 are set such that all the 12 equivalent lengths are different and the resultant passbands are evenly distributed within the frequency range of interest (0–10 GHz)

Switchable Microwave Photonic Multiband Bandpass Filter
Conclusion
Additional Information
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.