Abstract

We study the translocation process of a polymer in the absence of external fields for various pore diameters b and membrane thickness L. The polymer performs Rouse and reptation dynamics. The mean translocation time (tau(t)) that the polymer needs to escape from a cell and the mean dwell time (tau(d)) that the polymer spends in the pore during the translocation process obey scaling relations in terms of the polymer length N, L, and b/R(g), where R(g) is the radius of gyration for the polymer. We explain these relations using simple arguments based on polymer dynamics and the equilibrium properties of polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.