Abstract

In view of the problems involved in the design of hypersonic aircraft great interest has arisen in recent years as to the behavior of wings in fast supersonic flows. Two main approaches have been used: a study of hypersonic flow around traditional wings, and a search for new configurations with optimum aerodynamic properties. Aerodynamic [1, 2], heat-transfer [3], and stability investigations (for V-shaped wings in super- and hypersonic flows) belong to the latter category. Before attaining supersonic flight the aircraft has to overcome the range of subsonic velocities. In this connection it is important to study flow around V-shaped wings at M < 1. Little research has been devoted to flow around such configurations at subsonic velocities, principal attention having been directed at the study of rapid flow around aircraft configurations with V-shaped wings or tails. The results of analytical and numerical calculations allowing for the interference of transient aerodynamic forces acting on a V-shaped and mutiple-fin tail group in combination with the fuselage were presented in [4, 5]. An experimental study of V-shaped wings as regards the influence of the wing dihedral angle on the aerodynamic characteristics of a model aircraft was presented in [6, 7].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call