Abstract
Large grain, (RE)BCO bulk superconductors fabricated by top seeded melt growth (TSMG) are able to generate large magnetic fields compared to conventional, iron-based permanent magnets. Following 20 years of development, these materials are now beginning to realize their considerable potential for a variety of engineering applications such as magnetic separators, flywheel energy storage and magnetic bearings. MgB2 has also continued to emerge as a potentially important bulk superconducting material for engineering applications below 20 K due to its lack of granularity and the ease with which complex shapes of this material can be fabricated. This issue of Superconductor Science and Technology contains a selection of papers presented at the 7th International Workshop on the Processing and Applications of Superconducting (RE)BCO Large Grain Materials, including MgB2, held 29th–31sy July 2010 at the Omni Shoreham Hotel, Washington DC, USA, to report progress made in this field in the previous three year period. The workshop followed those held previously in Cambridge, UK (1997), Morioka, Japan (1999), Seattle, USA (2001), Jena, Germany (2003), Tokyo, Japan (2005) and again in Cambridge, UK (2007).The scope of the seventh PASREG workshop was extended to include processing and characterization aspects of the broader spectrum of bulk high temperature superconducting (HTS) materials, including melt-cast Bi-HTS and bulk MgB2, recent developments in the field and innovative applications of bulk HTS. A total of 38 papers were presented at this workshop, of which 30 were presented in oral form and 8 were presented as posters.The organizers wish to acknowledge the efforts of Sue Butler of the University of Houston for her local organization of the workshop. The eighth PASREG workshop will be held in Taiwan in the summer of 2012.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.