Abstract

Rodent species and strains show wide variations in susceptibility to lung tumorigenesis. In mice, hierarchical clustering of 29 inbred laboratory strains by pulmonary adenoma susceptibility 1 (Pas1) locus polymorphisms separated the strains into either an A/J- or a C57BL/6J-type Pas1 haplotype. A pooled analysis (including >8500 mice) of studies on spontaneous and chemically induced lung tumorigenesis in these strains revealed a significantly higher risk of spontaneous lung tumors [odds ratio (OR) 12.17; 95% confidence interval (CI) 9.00-16.45] as well as of chemically induced lung tumors (OR 15.14; 95% CI 12.51-18.31) in the A/J-type haplotype. Strain differences were observed with six different carcinogens, suggesting that Pas1 locus activity is carcinogen-independent. Thus, the present meta-analysis indicates a link between the genetic control of spontaneous and chemically induced lung tumor susceptibility in mice. The Pas1 susceptibility allele is frequent in the population of inbred mouse strains, whereas a counterpart appears to be absent or rare in rat and hamster strains. These findings might help in the interpretation of results of rodent carcinogenicity bioassays and assessing the risk of lung carcinogenesis from chemicals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.