Abstract
The metabolic syndrome, a complex set of phenotypes typically associated with obesity and diabetes, is an increasing threat to global public health. Fundamentally, the metabolic syndrome is caused by a failure to properly sense and respond to cellular metabolic cues. We studied the role of the cellular metabolic sensor PAS kinase (PASK) in the pathogenesis of metabolic disease by using PASK(-/-) mice. We identified tissue-specific metabolic phenotypes caused by PASK deletion consistent with its role as a metabolic sensor. Specifically, PASK(-/-) mice exhibited impaired glucose-stimulated insulin secretion in pancreatic beta-cells, altered triglyceride storage in liver, and increased metabolic rate in skeletal muscle. Further, PASK deletion caused nearly complete protection from the deleterious effects of a high-fat diet including obesity and insulin resistance. We also demonstrate that these cellular effects, increased rate of oxidative metabolism and ATP production, occur in cultured cells. We therefore hypothesize that PASK acts in a cell-autonomous manner to maintain cellular energy homeostasis and is a potential therapeutic target for metabolic disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.