Abstract
In matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS), analyte molecules are known to be ionized by mixing with organic matrix molecules. As the organic matrix molecules are ionized, they generate unreproducible mass peaks such that MALDI-TOF MS is nearly impossible in the low mass-to-charge (m/z) range (<1000). In this work, we aimed to develop a parylene-matrix chip for the detection of small molecules in the low m/z range by using MALDI-TOF MS. The parylene-matrix chip was fabricated by the deposition of a partially porous parylene-N thin film on a dried organic matrix array. The properties of the parylene thin film were analyzed by atomic force microscopy (AFM) and cyclic voltammetry (CV). Mass spectrometry was performed by using a parylene-matrix chip with eight amino acids as model analytes. The surface roughness and the electric conductivity of the parylene-N film were analyzed by AFM and CV analysis to determine its suitability for a parylene-matrix chip. The ionization of samples on the parylene-matrix chip was optimized by adjusting the laser intensity. The feasibility of applying a parylene-matrix chip for small molecule analysis was tested by using eight kinds of amino acids as model analytes and the simultaneous detection of multiple analytes from the amino acid mixture was also demonstrated. The parylene-matrix chip can be applied for the detection of multiple analytes in the m/z ratio range of small molecules (<1000) using MALDI-TOF MS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.