Abstract

Chromatin relaxation is a prerequisite for the DNA repair machinery to access double-strand breaks (DSBs). Local histones around the DSBs then undergo prompt changes in acetylation status, but how the large demands of acetyl-CoA are met is unclear. Here, we report that pyruvate dehydrogenase 1α (PDHE1α) catalyzes pyruvate metabolism to rapidly provide acetyl-CoA in response to DNA damage. We show that PDHE1α is quickly recruited to chromatin in a polyADP-ribosylation-dependent manner, which drives acetyl-CoA generation to support local chromatin acetylation around DSBs. This process increases the formation of relaxed chromatin to facilitate repair-factor loading, genome stability and cancer cell resistance to DNA-damaging treatments in vitro and in vivo. Indeed, we demonstrate that blocking polyADP-ribosylation-based PDHE1α chromatin recruitment attenuates chromatin relaxation and DSB repair efficiency, resulting in genome instability and restored radiosensitivity. These findings support a mechanism in which chromatin-associated PDHE1α locally generates acetyl-CoA to remodel the chromatin environment adjacent to DSBs and promote their repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.