Abstract

BackgroundDuring acute Human parvovirus B19 (B19) infection a transient reduction in blood haemoglobin concentration is induced, due to a 5-7 day cessation of red cell production. This can precipitate severe anaemia in subjects with a range of pre-existing conditions. Of the disease markers that occur during B19 infection, high IgM levels occur closest in time to the maximum reduction in haemoglobin concentration. Previous studies of the contribution of B19 to severe anaemia among young children in Africa have yielded varied results. This retrospective case/control study seeks to ascertain the proportion of severe anaemia cases precipitated by B19 among young children admitted to a Kenyan district hospital.MethodsArchival blood samples from 264 children under 6 years with severe anaemia admitted to a Kenyan District Hospital, between 1999 and 2004, and 264 matched controls, were tested for B19 IgM by Enzyme Immunosorbent Assay and 198 of these pairs were tested for B19 DNA by PCR. 536 samples were also tested for the presence of B19 IgG.Results7 (2.7%) cases and 0 (0%) controls had high B19 IgM levels (Optical Density > 5 × cut-off value) (McNemar's exact test p = 0.01563), indicating a significant association with severe anaemia. The majority of strongly IgM positive cases occurred in 2003.10/264 (3.7%) cases compared to 5/264 (1.9%) controls tested positive for B19 IgM. This difference was not statistically significant, odds ratio (OR) = 2.00 (CI95 [0.62, 6.06], McNemar's exact test p = 0.3018. There was no significant difference between cases and controls in the B19 IgG (35 (14.8%) vs 32 (13.6%)), OR = 1.103 (CI95 [0.66, 1.89], McNemar's exact test, p = 0.7982), or the detection of the B19 DNA (6 (3.0%) vs 5 (2.5%)), OR = 1.2 (CI95 [0.33, 4.01], McNemar's exact test p = 1).ConclusionsHigh B19 IgM levels were significantly associated with severe anaemia, being found only among the cases. This suggests that 7/264 (2.7%) of cases of severe anaemia in the population of children admitted to KDH were precipitated by B19. While this is a relatively small proportion, this has to be evaluated in the light of the IgG data that shows that less than 15% of children in the study were exposed to B19, a figure much lower than reported in other tropical areas.

Highlights

  • During acute Human parvovirus B19 (B19) infection a transient reduction in blood haemoglobin concentration is induced, due to a 5-7 day cessation of red cell production

  • High B19 IgM levels were significantly associated with severe anaemia, being found only among the cases

  • This suggests that 7/264 (2.7%) of cases of severe anaemia in the population of children admitted to KDH were precipitated by B19

Read more

Summary

Introduction

During acute Human parvovirus B19 (B19) infection a transient reduction in blood haemoglobin concentration is induced, due to a 5-7 day cessation of red cell production. This can precipitate severe anaemia in subjects with a range of pre-existing conditions. Severe anaemia (haemoglobin less than 50 g/l) is a major cause of death among young children in malaria endemic areas, including sub-Saharan Africa [1,2,3] In such areas the majority of children have mild to moderate anaemia arising from factors which reduce red cell survival time and/or inhibit erythropoiesis, including P falciparum. Of the markers of B19 infection, high IgM concentrations are most closely associated in time with the period of reduced haemoglobin

Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.