Abstract

Previous immunocytochemical studies have shown that GABAergic nonpyramidal neurons of the rat hippocampus survive in intracerebral transplants. However, information is still lacking about the dendritic organization and the input synapses of these cells as well as their capacity to express the calcium-binding protein parvalbumin (PARV) under transplant conditions. In the present study, a monoclonal antibody against PARV was used to examine the dendritic morphology and the synaptic organization of parvalbumin-containing GABAergic neurons in hippocampal and dentate transplants. In addition, parvalbumin-containing nonpyramidal neurons were studied in neocortical transplants to compare the differentiation of grafted allocortical and neocortical nonpyramidal neurons. Tissue blocks of hippocampus and fascia dentata and of the parietal neocortex were taken from late embryonic rats (E 21 and E 16, respectively) and were transplanted into a cavity in the somatosensory cortex of young adult rats. After 3.5 or 7 months survival, the recipient brains were fixed by perfusion and immunostained for PARV. As in the hippocampal formation in situ, PARV-containing neurons in the hippocampal transplants were observed within and in the vicinity of the pyramidal and granule cell layer. In neocortical transplants, PARV-immunoreactive cells were distributed in all parts of the transplant with dendrites extending in various directions. In both hippocampal and neocortical transplants, immunoreactive dendrites were smooth and displayed the characteristic regular varicosities known from in situ studies of these cells. Numerous unlabeled terminals as well as a few immunoreactive boutons established synapses on the immunoreactive dendrites. PARV-positive terminals formed the typical pericellular baskets around the immunonegative cell bodies of pyramidal neurons and granule cells in the transplants. They established symmetric synapses with cell bodies and proximal dendrites. Synapses on axon initial segments were absent or rare. Our results demonstrate that allocortical as well as neocortical nonpyramidal neurons transplanted to the neocortex of adult recipients survive transplantation, express the calcium-binding protein parvalbumin, and develop a cell-specific morphology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call