Abstract

The basal forebrain (BF) plays an important role in modulating cortical activity and facilitating processes of attention, learning, and memory. This role is subserved by cholinergic neurons but also requires the participation of other noncholinergic neurons. Noncholinergic neurons include gamma-amino butyric acidergic (GABAergic) neurons, some of which project in parallel with the cholinergic cells to the cerebral cortex, others of which project caudally or locally. With the original aim of distinguishing different subgroups of GABAergic neurons, we examined immunostaining for the calcium binding proteins (CBPs) parvalbumin (Parv), calbindin (Calb), and calretinin (Calret) in the rat. Although the CBP(+) cell groups were distributed in a coextensive manner with the GABAergic cells, they were collectively more numerous. Of cells retrogradely labeled with cholera toxin (CT) from the prefrontal or parietal cortex, Parv(+) and Calb(+) cells, but not Calret(+) cells, represented substantial proportions ( approximately 35-45% each) that collectively were greater than that of GABAergic projection neurons. From dual immunostaining for the CBPs and glutamic acid decarboxylase (GAD), it appeared that the vast majority (>90%) of the Parv(+) group was GAD(+), whereas only a small minority (<10%) of the Calb(+) or Calret(+) group was GAD(+). Significant proportions of Calb(+) (>40%) and Calret(+) (>80%) neurons were immunopositive for phosphate-activated glutaminase, the synthetic enzyme for transmitter glutamate. The results suggested that, whereas Calret(+) cells predominantly comprise caudally or locally projecting, possibly glutamatergic BF neurons, Parv(+) cells likely comprise the cortically projecting GABAergic BF neurons and Calb(+) cells the cortically projecting, possibly glutamatergic BF neurons that would collectively participate with the cholinergic cells in the modulation of cortical activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.