Abstract

The goal of this study was to develop a robust method of analyzing surface water samples for S-triazine herbicides, chloroacetanilide herbicides, and their transformation products (TPs) using solid-phase extraction (SPE) followed by liquid chromatograph-mass spectrometry (LC-MS) with electrospray ionization (ESI) by in-source collision-induced dissociation (ISCID) capability of an orthogonal electrospray ionization probe on a single quadrupole LC-MS system. The method developed here met the goals of the study and yielded estimated method detection limits (EMDLs) averaging 0.3 ± 0.1 ng L−1 for S-triazines and their TPs and 0.7 ± 0.4 ng L−1 for chloroacetanilides and TPs. Spiked filtered river water yielded SPE recoveries ranging from 94.2 % ± 4.8 % for S-triazines and TPs after eliminating three compounds with less that 65 % recovery from analysis and 95.9 % ± 19 % for chloroacetanilides and their TPs. The method was field-tested with filtered water samples collected from four sites over a four-month period. Detectible values of S-triazines and TPs ranged from 0.3 to 1540 ng L−1 with a mean of 79.3 and a median of 19.4 ng L−1. Detectible values for chloroacetanilides and TPs ranged from 0.31 to 3780 ng L−1 with a mean of 252 and a median of 25.6 ng L−1. An additional goal was to determine if the method was useful for microbial degradation studies using native bacterial communities. The bacteria transformed atrazine (2-chloro-4-ethylamino-6-isopropylamino-S-triazine) solely into 2-hydroxy atrazine (2-hydroxy-4-ethylamino-6-isopropylamino-S-triazine) with concentrations of 78.4, 63.3 and 32.5 ng L−1 after 12 days of incubation compared with 6.3 and 7.1 ng L−1 for control dark and control sunlight respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.