Abstract

Three experiments were conducted to test Hoffman and Richards's (1984) hypothesis that, for purposes of visual recognition, the human visual system divides three-dimensional shapes into parts at negative minima of curvature. In the first two experiments, subjects observed a simulated object (surface of revolution) rotating about a vertical axis, followed by a display of four alternative parts. They were asked to select a part that was from the object. Two of the four parts were divided at negative minima of curvature and two at positive maxima. When both a minima part and a maxima part from the object were presented on each trial (experiment 1), most of the correct responses were minima parts (101 versus 55). When only one part from the object--either a minima part or a maxima part--was shown on each trial (experiment 2), accuracy on trials with correct minima parts and correct maxima parts did not differ significantly. However, some subjects indicated that they reversed figure and ground, thereby changing maxima parts into minima parts. In experiment 3, subjects marked apparent part boundaries. 81% of these marks indicated minima parts, 10% of the marks indicated maxima parts, and 9% of the marks were at other positions. These results provide converging evidence, from two different methods, which supports Hoffman and Richard's minima rule.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call