Abstract

Many cellular activities are driven by complex protein machines. By measuring the behaviour of fluorescent protein fusions in real time in living cells it has become apparent that many of these complexes are not fixed, but are dynamic. To some extent this might be expected, for example, for cell division complexes, as defining mid-cell is linked to growth and cell cycle, but perhaps comes as more of a surprise with a complex anchored machine like the bacterial flagellar motor. The assumption has been that once made it remains intact. However, the dynamics of this structure is strongly supported in two manuscripts in this issue of Molecular Microbiology. The stator units which form a peptioglycan anchored ring around the rotor, generating torque in response to the ion motive force, clearly disengage when conditions change. The driving ion is shown to be important in both engagement of the stator to the rotor and the selection of the type of stator unit. These new results provide an insight into the mechanisms underlying motor function, which might rely on dynamic processes, and clearly illustrate the need to move away from a static view of cellular structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.