Abstract

We argue that due to parity constraints, the helicity combination of the purely momentum space counterparts of the Wigner distributions — the generalized transverse momentum distributions — that describes the configuration of an unpolarized quark in a longitudinally polarized nucleon, can enter the deeply virtual Compton scattering amplitude only through matrix elements involving a final state interaction. The relevant matrix elements in turn involve light cone operators projections in the transverse direction, or they appear in the deeply virtual Compton scattering amplitude at twist three. Orbital angular momentum or the spin structure of the nucleon was a major reason for these various distributions and amplitudes to have been introduced. We show that twist three contributions to deeply virtual Compton scattering provide observables related to orbital angular momentum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.