Abstract

We derive the distribution of energy and momentum transmitted from a primary fast parton and its medium-induced bremsstrahlung gluons to a thermalized quark-gluon plasma. Our calculation takes into account the important and thus far neglected effects of quantum interference between the resulting color currents. We use our result to obtain the rate at which energy is absorbed by the medium as a function of time and find that the rate is modified by the quantum interference between the primary parton and secondary gluons. This Landau-Pomeranchuk-Migdal type interference persists for time scales relevant to heavy ion phenomenology. We further couple the newly derived source of energy and momentum deposition to linearized hydrodynamics to obtain the bulk medium response to realistic parton propagation and splitting in the quark-gluon plasma. We find that because of the characteristic large angle in-medium gluon emission and the multiple sources of energy deposition in a parton shower, formation of well defined Mach cones by energetic jets in heavy ion reactions is not likely.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.