Abstract

We present a new set of parton distributions, NNPDF3.1, which updates NNPDF3.0, the first global set of PDFs determined using a methodology validated by a closure test. The update is motivated by recent progress in methodology and available data, and involves both. On the methodological side, we now parametrize and determine the charm PDF alongside the light-quark and gluon ones, thereby increasing from seven to eight the number of independent PDFs. On the data side, we now include the D0 electron and muon W asymmetries from the final Tevatron dataset, the complete LHCb measurements of W and Z production in the forward region at 7 and 8 TeV, and new ATLAS and CMS measurements of inclusive jet and electroweak boson production. We also include for the first time top-quark pair differential distributions and the transverse momentum of the Z bosons from ATLAS and CMS. We investigate the impact of parametrizing charm and provide evidence that the accuracy and stability of the PDFs are thereby improved. We study the impact of the new data by producing a variety of determinations based on reduced datasets. We find that both improvements have a significant impact on the PDFs, with some substantial reductions in uncertainties, but with the new PDFs generally in agreement with the previous set at the one-sigma level. The most significant changes are seen in the light-quark flavor separation, and in increased precision in the determination of the gluon. We explore the implications of NNPDF3.1 for LHC phenomenology at Run II, compare with recent LHC measurements at 13 TeV, provide updated predictions for Higgs production cross-sections and discuss the strangeness and charm content of the proton in light of our improved dataset and methodology. The NNPDF3.1 PDFs are delivered for the first time both as Hessian sets, and as optimized Monte Carlo sets with a compressed number of replicas.

Highlights

  • A precise understanding of parton distributions [1,2,3] (PDFs) has played a major role in the discovery of the Higgs boson and will be a key ingredient in searches for new physics at the LHC [4]

  • We present a new set of parton distributions, NNPDF3.1, which updates NNPDF3.0, the first global set of PDFs determined using a methodology validated by a closure test

  • For gluon fusion and tth, which are both driven by the gluon PDF, the former for x ∼ 10−2, and the latter for large x, results from the various PDF sets agree within uncertainties; NNPDF3.0 and NNPDF3.1 are in good agreement, with the new prediction exhibiting reduced uncertainties

Read more

Summary

Introduction

A precise understanding of parton distributions [1,2,3] (PDFs) has played a major role in the discovery of the Higgs boson and will be a key ingredient in searches for new physics at the LHC [4]. In recent years PDF sets of a new generation [5,6,7,8,9,10,11] have been developed for use at the LHC Run II Some of these have been used in the construction of the PDF4LHC15 combined sets, recommended for new physics searches and for the assessment of PDF uncertainties on precision observables [12]. These PDF4LHC15 sets are obtained by means of statistical combination of the three global sets [5,6,7]: this is justified by the improved level of agreement in the global determinations, with differences between them largely consistent with statistical fluctuation. Two directions of progress are required in order to reach this goal, the motivation for an update being twofold

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call