Abstract

Protein complexes play deterministic roles in live entities in sensing, compiling, controlling, and responding to external and internal stimuli. Thermodynamic stability is an important property of protein complexes; having knowledge about complex stability helps us to understand the basics of protein assembly-related diseases and the mechanism of protein assembly clearly. Enormous protein-protein interactions, detected by high-throughput methods, necessitate finding fast methods for predicting the stability of protein assemblies in a quantitative and qualitative manner. The existing methods of predicting complex stability need knowledge about the three-dimensional (3D) structure of the intended protein complex. Here, we introduce a new method for predicting dissociation free energy of subunits by analyzing the structural and topological properties of a protein binding patch on a single subunit of the desired protein complex. The method needs the 3D structure of just one subunit and the information about the position of the intended binding site on the surface of that subunit to predict dimer stability in a classwise manner. The patterns of structural and topological properties of a protein binding patch are decoded by recurrence quantification analysis. Nonparametric discrimination is then utilized to predict the stability class of the intended dimer with accuracy greater than 85%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.