Abstract

The pincer-Co catalyzed nitrile hydroboration of nitrile has been presented as an elegant strategy to afford amine synthesis; however, ligand engineering is required. We show here a strategy to tune the catalytic behavior of the organometallic catalyst, as an alternative approach to ligand engineering, by means of computational investigations to understand the effect of partners such as (18-crown-6)K+, W(CO)3 and W(PMe3)3 on the reactivity of the pincer-Co catalyzed nitrile hydroboration reaction through π-coordination to the ligand aromatic ring. The extra additives bind the central phenyl ring of the ligand by either dispersion or chemical bonding. The electron-richness of the cobalt center is tuned by the partner, and follows the order (18-crown-6)K+ > W(PMe3)3 > no partner > W(CO)3. While the influence of the covalent W-containing partners parallels the electron-richness of the W, the non-covalent partner, (18-crown-6)K+, surprisingly increases the donor ability of the pincer ligand through the polarization effect. All the elementary steps involved in the nitrile hydroboration reaction are influenced by the partner, and the overall barrier is lowered by a surprisingly large amount of 4.9 kcal mol-1 in the presence of (18-crown-6)K+, suggesting a notable partner effect to be explored by experimentalists so that the reactivity of a catalyst can be tuned without ligand modification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call