Abstract

AbstractFor which infinite cardinals $\kappa $ is there a partition of the real line ${\mathbb R}$ into precisely $\kappa $ Borel sets? Work of Lusin, Souslin, and Hausdorff shows that ${\mathbb R}$ can be partitioned into $\aleph _1$ Borel sets. But other than this, we show that the spectrum of possible sizes of partitions of ${\mathbb R}$ into Borel sets can be fairly arbitrary. For example, given any $A \subseteq \omega $ with $0,1 \in A$ , there is a forcing extension in which ${A = \{ n :\, \text {there is a partition of } {{\mathbb R}} \text { into }\aleph _n\text { Borel sets}\}}$ . We also look at the corresponding question for partitions of ${\mathbb R}$ into closed sets. We show that, like with partitions into Borel sets, the set of all uncountable $\kappa $ such that there is a partition of ${\mathbb R}$ into precisely $\kappa $ closed sets can be fairly arbitrary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call