Abstract
Distribution and forms of transition metals (Ti, Zn, Ni, Co, Mn, Fe, Cu, V and Cr) were investigated in oxidised, partly oxidised and reduced zones of sulphide-bearing fine-grained sediments located in the coastal areas of western Finland. Samples for the analysis and study of vertical distribution of elements were taken from each vertical 10 cm section in pits ranging in depth between 2 and 3 metres, while bulk samples for characterisation of species and forms of metals were taken from 3 zones in each pit: the acid sulphate soil (characterised by acid and oxidising conditions), transition zone (characterised by a steep pH gradient and partly oxidising conditions) and the reduced zone (pH >6). The former samples were digested in aqua regia (3:1:2 HCl:HNO 3:H 2O), while the latter were digested in aqua regia and hot concentrated acids (HClO 4–HNO 3–HCl–HF) and were subjected to extractions with acid ammonium acetate, H 2O 2 and acid ammonium oxalate. Each leachate was analysed for metals with ICP–AES. The vertical variation in the concentrations of Ti were small at all the studied sites indicating that the sediments are homogeneous and that the total losses of other elements from the soil profiles (acid sulphate soil+transition zone) are not extensive. Field observations, extractions with ammonium oxalate, and concentration–variation patterns indicated that Fe-oxide is largely precipitated and retained also in these acid soils. There are, however, indications of redistribution of Fe within the soil profiles. The results also demonstrated that Mn, Ni, Zn, Co and Cu have been lost in considerable amounts from the acid sulphate soils. However, whereas Mn in general has been lost throughout the soil profile, part of the Zn, Ni and Co released in the acid sulphate soils have migrated downward and been reimmobilised in the transition zone immediately above the reduced zone. Also Cu has been lost from the acid sulphate soil, but generally in smaller proportions than Mn, Zn, Ni and Co. Dissolved metal sulphides seem to be major sources of the mobilised metal fractions. A main part of the V and Cr in the sediments are associated with weathering-resistant minerals. These metals are therefore, like Ti, only to a limited extent mobilised by the oxidation of the sulphide-bearing sediments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.