Abstract

The outcome of this paper allows calculating the fraction of heat generated in the primary shear zone that is transferred to the workpiece in face milling. The proposed approach is based on a sequentially coupled analysis of the heat partitioning in the cutting edge normal plane and in the reference plane. The latter, for the first time, allows to systematically take into account the removal of heated workpiece material by subsequent cutting tool engagements. The generated heat is related to the uncut chip thickness. Utilizing Weiner's approach, the heat flux density distribution is determined which serves as input for a three-dimensional thermal finite element simulation that is validated experimentally by temperature measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call