Abstract

The parA system of plasmid R1 consists of two genes, parM and parR, and a cis-acting centromere-like site parC. The ParM protein exhibits similarity with a superfamily of ATPases that includes actin, hsp70 and hexokinase. ParM was purified to near-homogeneity and assayed for in vitro ATPase activity. The wild-type ParM protein was found to posses ATPase activity. Mutant ParM derivatives that exhibited decreased in vitro ATPase activity were non-functional in vivo, indicating that the ATP turnover by ParM is essential for correct plasmid partitioning. The mutant ParM proteins exhibited trans-dominance, suggesting that ParM participates as a structural component of the partitioning apparatus. The ATPase activity of ParM was activated slightly by the presence of ParR and activated to a much greater extent when ParR was bound to the centromere-like parC region. An analysis using the yeast two-hybrid system indicated that ParM and ParR interact, and demonstrated that ParR interacts with itself. Thus our results suggest a direct interaction of ParM and ParR at the natural partition site parC, and that the ATPase activity of ParM is specifically stimulated by this interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.