Abstract

Double-chamber plethysmography is a well established noninvasive method of assessing airflow obstruction in small lab animals. It allows measurement of the specific airway resistance (sRaw), which unlike enhanced pause (Penh), is a meaningful airway mechanics parameter. Since sRaw is measured in spontaneously breathing mice, a limitation of the method is the inability to exclude nasal resistance changes. We recently showed that mice are not truly obligate nasal breathers and that after nasal occlusion, nasally breathing mice can transition to an oral mode of breathing. We now show that it is experimentally possible to algebraically separate the average nasal and pulmonary (including laryngeal) components of total airway resistance change by a series of measurements made across groups of mice breathing nasally or orally, assuming that oral resistance remains constant. Using this approach, we show that nasal resistance change comprises one-half or more of the total resistance change during methacholine challenge. Inhibition of mucin secretion from airway goblet cells attenuates pulmonary but not nasal airway hyperresponsiveness (AHR), and nasal AHR in a murine model of rhinitis may be related to edema.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.