Abstract

Radiochemical partitioning experiments using 203Hg have been undertaken with mixtures of river, seawater and sediment samples taken from three geochemically contrasting UK estuaries: the Plym, Beaulieu and Mersey. Species of dissolved Hg were determined using reversed-phase C18 chelating columns and particulate species were determined by sequential leaching with 1 M NH4OAc and 1 M HCl. Mercury had a high particle reactivity with partition coefficients, KDs, ranging from 10(4) to 5 x 10(5) ml g(-1), depending on salinity, the chemical composition of the end-member waters, and on the physico-chemical characteristics of the sediment. Dissolved organic matter present in the waters (humic substances and/or anthropogenic compounds) was found to be the main factor governing the forms of dissolved Hg and their reactivity. From the spiked 203Hg, up to 95% of the dissolved metal was retained on the C18 columns for the Mersey waters, whereas this fraction was < 60% in the Plym and Beaulieu waters. Quasi-irreversible adsorption of Hg onto particles from each estuary was observed over a time-scale of a few hours and < 20% of total particulate Hg was released by the sequential leach. In this paper, physico-chemical processes are proposed to explain the estuarine behaviour of Hg and the results are discussed in terms of Hg availability in estuarine systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call