Abstract

Lipophilic solutes permeate rapidly through lipid bilayer membranes. However, the outer membrane of enteric bacteria, which is composed of a lipopolysaccharide monolayer outer leaflet and the glycerophospholipid inner leaflet, shows extremely low permeability to hydrophobic solutes. In order to examine the cause of this exceptionally low permeability, the lipid/water partition behavior of various lipophilic probes was determined by using lipopolysaccharides of various chemotypes and glycerophospholipids. With all probes, under many different conditions, the lipopolysaccharide/water partition coefficients were generally about an order of magnitude smaller than the phospholipid/water partition coefficients, and this result is consistent with the low permeability of the lipopolysaccharide monolayer, and hence the asymmetric bilayer found in the outer membrane. Furthermore, organic polycations significantly increased the partition of N-phenylnaphthylamine into lipopolysaccharides, a result again consistent with the permeability-increasing effect of such cations on intact outer membrane. Very defective, ‘deep rough’ lipopolysaccharides of chemotypes Rd 2, Rd 1 and Re, had only slightly (20–75%) higher partition coefficients in comparison with the more complete lipopolysaccharides, and this difference is probably not enough to explain the approximately 100-fold increase in lipophile permeability seen in deep rough strains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.