Abstract

The partitioning of the natural polyelectrolyte humic acid (HA) from an aqueous dispersion into a model biomimetic gel (alginate) and a synthetic polyacrylamide gel (PAAm) is explored. In both gels, the spatial distribution of HA in the gel body, as measured by confocal laser scanning microscopy, is markedly nonhomogeneous. A striking feature is the enhanced accumulation of HA in a thin film of thickness ca. 15 μm at the surface of the gel body, resulting in average local concentrations that are, for PAAm and alginate respectively, a factor of 10 and 4 greater than that in the bulk solution. The time dependence of accumulation in the surface film is predominantly controlled by the diffusive supply of HA from the aqueous medium, with a time constant on the order of 10(3) s for both gels. The concentration of HA within the bulk gel body differs significantly from that in the bulk aqueous medium: substantially higher for PAAm but much lower for alginate. The results are significant for understanding the nature and rate of sink/source functioning at permeable phases in contact with aqueous media, e.g., biofilms and gel-like layers at biological interfaces or employed in chemical speciation sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.