Abstract

Crystallization of deep magma oceans would have created the chemical heterogeneity of the Earth's mantle. Previous geophysical studies have suggested a possible existence of the Fe3+-rich lower mantle relative to the upper mantle because the seismic profile of the Earth's lower mantle is well explained by the presence of Fe3+-rich bridgmanite. Such a contrasting distribution of Fe3+/ΣFe ratios between the upper mantle and the lower mantle could have triggered the gradual oxidation of the upper mantle by upwelling Fe3+-rich lower mantle in the early Archean around 3 billion years ago (Ga). However, whether Fe3+-rich lower mantle and Fe3+-poor upper mantle could have been formed or not in the early Earth is still poorly understood. Here we report experimental constraints on the partitioning of Fe2+ and Fe3+ between bridgmanite and silicate melt at 23–27 GPa to investigate the solid-liquid fractionation of Fe2+ and Fe3+ in the deep magma ocean. Our results show negligible fractionation of Fe2+ and Fe3+ between bridgmanite and silicate melt at the uppermost lower mantle conditions, suggesting that preferential incorporation of Fe3+ into bridgmanite during magma ocean crystallization is unlikely. If the lower mantle had become enriched in Fe3+ during the formation of the Earth, another mechanism, such as the redox disproportionation of Fe2+, may have played a more important role in controlling the Fe3+/ΣFe ratio of the mantle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call